Basics of Quantum Chemistry

Quantum mechanical (QM) calculations:

when electrons are involved
when a high degree of accuracy is required
to avoid extensive parameterizations
spectroscopic properties transition structures excited states

energies and structures of reactive sites
non standard systems (e.g. radicals)

Which are the problems ?

Electron correlation

Many degrees

of freedom | nuclear |
| :--- |
| (solute) |

> Post-HF methods
> Density functional theory
electronic
nuclear (solute)
nuclear
(solvent) molecular dynamics

Ab Initio Theory

Means "from first principles;" this implies that no (few) assumptions are made, and that the method is "pure" from a theoretical standpoint (in practice, may not be really true)

Even $a b$ initio is based on approximate solutions to the Schrödinger equation:

$$
\hat{H} \Psi=E \Psi
$$

Exact solutions only for extremely simple systems!

Schrödinger equation: $\hat{H} \Psi=\mathrm{E} \Psi$

$\hat{H}=$ Hamiltonion operator

3 Coulombic energy terms; one attractive, 2 repulsive

Generally one of the types:
Hartree-Fock
considers each electron to experience a combined effect of all of other electrons

Correlated methods (several) considers individual electron interactions (to some extent)

Density Functional Theory (DFT)

CPU time scales as n^{3} to n^{4} where $\mathrm{n}=$ number of basis functions

Hartree-Fock Method

Main approximations introduced to allow "solution" of many-electrons Schrödinger equation

Born-Oppenheimer approximation: electrons act independently of nuclei

Hartree-Fock approximation: electrons experience the average "field" generated by all other electrons as a group, not individually

LCAO: molecular orbitals are constructed as linear combinations of atom-centered orbitals

Schrödinger equation after BornOppenheimer approximation

Density Functional Theory (DFT)

DFT models electron correlation as a functional of electron density (ρ)

 \rightarrow Kohn-Sham equations
What is density ?

- Density provides information about how something is distributed in space
- For a chemical system, electron density tells us where the electrons are likely to exist

Allyl Cation:
$\rho \propto \Psi^{*} \Psi$

Density Functional Theory (DFT)

within the KS formalism

$$
E[\rho]=T_{\text {kin }}+E_{N-e}[\rho]+E_{J}[\rho]+E_{X C}[\rho] \text { approximate }
$$

$$
E_{x c}[\rho]=\int F_{x c}(\rho, \nabla \rho) d r \quad F_{x c}=\text { exchange correlation functional }
$$

$$
\begin{gathered}
\mathrm{T}_{\text {kin }}=\text { kinetic energy term } \\
\mathrm{E}_{J}=\text { electron-electron repulsion term } \\
\mathrm{E}_{\mathrm{N}-\mathrm{e}}=\text { potential energy } \\
\mathrm{E}_{\mathrm{XC}}=\mathrm{E}_{\mathrm{X}} \text { (quantum mechanical exchange energy) }+\mathrm{E}_{\mathrm{C}} \text { (dynamic correlation energy) }
\end{gathered}
$$

Hybrid $E_{X}=a E_{X}{ }^{H F}+(1-a) E_{X}{ }^{\text {DFT }}$

Behavior of HF and DFT

- By definition, HF has no electron correlation

As we will see shortly, this implies more serious errors for stretched/distorted bonds, i.e. disfavors overcoordination

- Pure DFT overestimates correlation

Preference for overcoordination

- Hence success of hybrid functionals which add HF exchange to DFT, e.g. B3LYP...
- Hartree-Fock alone is not very useful - barriers are usually overestimated by more than DFT underestimates

Density functional theory: computational efficiency and (often) satisfactory accuracy w.r.t. other ab inito methods

Basis Sets

"Combinations of mathematical functions used to represent atomic orbitals"

\checkmark Minimal
H: 1s; C, N, O: 1s, 2s, 2px, 2py, 2pz
\checkmark Slater type orbitals (STO)
too difficult to solve analytically when combined
\checkmark Gaussian type orbitals (GTO)
simpler to manipulate mathematically; combinations of Gaussian function [c $\left.x^{n} y^{m} z^{1} \exp \left(-\alpha r^{2}\right)\right]$ can approximate STO's

Basis functions: STO vs GTO

STO: more accurate near nuclei, but computationally expensive

GTO: less accurate near nuclei, but computationally cheaper

\qquad One uses then several GTO's grouped into « contracted gaussianss » (CG). Each CG is a linear combination of « primitives » (PG)

- Optimal combinations of Gaussian functions have been developed and are generally employed in ab initio work.

Split Basis Sets

Minimal (small) basis sets such as STO-3G do not adequately describe nonspherical (anisotropic) electron distribution in molecules

- "Split" valence basis sets (3-21G; 6-31G, etc.) were developed to overcome this problem: "each split valence atomic orbital is composed of a variable proportion of two (or more) functions of different size or radial extent"

3-21G \rightarrow commonly used simple split basis set

- good for HF geometry calculations on 1st row elements, not good for heavier elements or for accurate energies
- 3 primitive Gaussian functions for inner core (subvalence) electrons
- 2 Gaussians for contracted (small) valence orbitals
- 1 Gaussian for extended (large) valence orbitals

6-31G, 6-311G (the latter has two different sizes of extended Gaussian functions for valence orbitals)

Polarization functions \rightarrow 6-31G(d), or 6-31G(d,p) (a.k.a. 6-31G* and 6-31G**)

- adds 'd' function to 'heavy' atoms, 'p' function to H
a

II

Diffuse functions
$\rightarrow 6-31+G$

- adds an additional, larger p function to heavy (non-hydrogen or helium) atoms; indicated by + before G
\rightarrow 6-31++G
- adds an additional, larger p function to heavy (non-hydrogen or helium) atoms and an additional larger s function to light elements (hydrogen and helium)

Diffuse functions are useful to describe anions, molecules with lone pairs, excited states, TS

Example:

(p diffuse orbital added)

Basis Sets: Common combinations

```
6-31G(d) Common 'moderate' basis set
6-31G(d,p)
6-31+G(d,p) Good compromise
6-31++G(d,p)
```

Many other basis sets are in use, and basis sets can be modified/customized/optimized easily

Alphabet of Basis Sets

After > 30 years, only a handful of basis sets still used:
-STO-3G - The last MBS standing...
-"Pople-style" - m- $n_{1} \ldots n_{x} G \quad X$-zeta
$m=\#$ prim in core $n_{i}=\#$ prim in $i^{i t h}$ valence AO
3-21G - Pathologically good geometries for closedshell molecules w/HF (cancellation of errors)
6-31G, 6-31G*, 6-31G**, 6-31+G, 6-31++G

* = polarization on non-H \quad ** = polarization on all
$+=$ diffuse on non-H $\quad++=$ diffuse on all
-cc-pvXz, aug-cc-pvXz - X-zeta - "correlation-consistent"
best, but tend to be larger than Pople sets

Physical Interpretation

- Could just say more functions = more complete, but this gives no insight...
n-zeta:

Allows orbitals to "breathe,"
i.e. to change their radial extent

Physical Interpretation II

Polarization functions:
 extra valence and polarization functions will be most important when bonds are stretched or atoms are overcoordinated

Example is for H atom; in general, polarization functions allow orbitals to "bend"

Optimization

To optimize basis set parameters, one relies on the principle that HF theory is variational; that is, it converges to the "true" value of the energy and will never go below that value.

The constants and exponents that describe the Gaussian functions are varied sequentially until the lowest energy is obtained.

DATA SIMULATION

Input Data

Hypothesis of
$\longrightarrow \quad$ Minimization Chemical Model

Fitness Test

\downarrow good

Output Data

Graphical Presentation of Results

Direct SCF

PES Topography

Summary of choices:

Continuum Solvent Models (e.g. PCM)

"Real" solvent \longrightarrow distribution function $g(r) \longrightarrow$

- sharp reduction of degrees of freedom
- implicit average on accessible solvent conformations: make use of $\varepsilon(\mathrm{T})$
- both electrostatic and non-electrostatic contributions can be included

A sharp boudary ("cavity") is defined between solute and solvent

The molecular (free) energy in solution comes from three distinct contributions:

- electrostatic solute-solvent interactions
also included in the molecular Hamiltonian (affecting electronic properties)
- cavitation energy (entropic)
$\left.\left.\begin{array}{l}\text { non-electrostatic (dispersion-repulsion) } \\ \text { interactions }\end{array}\right\} \longrightarrow \begin{array}{c}\text { "classical" } \\ \text { description }\end{array}\right]$

Solvation free energies computed with great accuracy:

The procedure is also applicable to very large systems

CPU times (sec) to build the cavity (w.r.t. the number of surface tesserae)

CPU times (sec) to compute the solvation charges (w.r.t the number of surface tesserae)

Solvent as a continuum?

Implicit averaging of accessible solvent conformations (at a given temperature)

Good reproduction of bulk effect

Possibly inadequate for the first solvation layer of polar solutes in protic solvents

Solvent molecules taking part to reactions

> A mixed discrete/continuum model

Chemical shifts calculations

The Spin Hamiltonian

$$
\begin{aligned}
H= & S \cdot g \cdot B+\sum_{N} S \cdot A \cdot I_{N}+S \cdot D \cdot S \quad \text { EPR } \\
& \sum_{N} I_{N} \cdot\left(1-\sigma_{N}\right) \cdot B+\sum_{N, M} I_{N} \cdot\left(D_{N M}+K_{N M}\right) \cdot I_{M}
\end{aligned}
$$

$\mathbf{g}, \mathbf{A}, \mathbf{D}, \sigma$ can be expressed as $2^{\text {nd }}$ derivatives of the energy with respect to the external field and/or electron/nuclear spin

$$
<X>=\frac{\partial^{2} E}{\partial \lambda \partial \gamma}
$$

For instance

$$
g=\frac{\partial^{2} E}{\partial B \partial s}
$$

Find the terms of the electronic Hamiltonian that depends on external field and/or spin

Nuclear shielding calculated at DFT level with good accuracy for small molecules (GIAO/PBE0/6-311+G(2d,p))

On heavy atoms (C, N) ...

On hydrogen ...

To evaluate a proposed signal assignment:

- E.g. ${ }^{13} \mathrm{C}$-NMR of phenoxazones and pyridophenoxazones (related to the ommochromes, pigments of insects and crustaceans):

PBE0/6-311+G(d,p) // PBE0/6-31G(d); reference compound benzene

Solvent effects on NMR spectra

${ }^{17} \mathrm{O}$ isotropic shielding in N -methyl-formamide

continuum model

